

Abstracts

An AlGaAs/InGaAs pseudomorphic HEMT modulator driver IC with low power dissipation for 10-Gb/s optical transmission systems

M. Miyashita, N. Yoshida, Y. Kojima, T. Kitano, N. Higashisaka, J. Nakagawa, T. Takagi and M. Otsubo. "An AlGaAs/InGaAs pseudomorphic HEMT modulator driver IC with low power dissipation for 10-Gb/s optical transmission systems." 1997 Transactions on Microwave Theory and Techniques 45.7 (Jul. 1997 [T-MTT]): 1058-1064.

An optical modulator driver integrated circuit (IC) has been developed for 10-Gb/s optical communication systems. To achieve both high-frequency (HF) operation and low power dissipation, 0.2-spl mu/m T-shaped gate AlGaAs/InGaAs pseudomorphic high electron-mobility transistors (HEMTs) have been employed for their large transconductance $g_{\text{sub m}}$ of 610 mS/mm and high cutoff frequency $f_{\text{sub T}}$ of 67.5 GHz. In addition, optimizing input logic swing, switching transistor size in the output driver, and using cascode-current mirror circuits with small output conductance enable power dissipation as low as 1 W to be achieved at a 10-Gb/s nonreturn-to-zero (NRZ) signal output with 3 V_{sub p}./sub p/. This is the lowest value ever reported for power dissipation. As an additional function, the output-voltage swing can be controlled in the range from 2 to 3.3 V_{sub p}./sub p/. by the current mirror circuit for the purpose of adjusting the optical-output-signal duty factor through an optical modulator.

[Return to main document.](#)

Click on title for a complete paper.